
Monitoring needs to scale ever larger, particularly for GRID

Most current solutions do not scale well:

    Ganglia                         512 systems
    Big Brother                     75 systems
    Nagios (NetSaint)          650 systems
    NGOp                         2000 systems

Grid monitoring needs to scale into the 10^5 systems 
range.

So what do we learn from scaling to 2000 systems that
can help us scale to 200,000?

subnet
subnet

subnet

Host
Host

SYSTEM MONTORING LESSONS LEARNED FROM NGOP
Marc Mengel, Tanya Levshina, JimFromm

Fermilab

Why Worry About Monitoring? What Worked in NGOp

Found outages and trouble predictors promptly, improving sys-
tem uptimes and availability

Detected easily missed conditions (1 of 2 cpu’s offline, etc.)

Administrator-updated known status prevents alarms for 
planned outages, and provides notice to users

Lightweight UDP protocol allows thousands of agents to report
to one server

Multiple "status engines" providing customized views of
hierarchy and error levels for different categories of users

Python prototyping, with C/C++ where needed for performance

Nested XML-based notation for configuration

Database logging of alarms, etc. by asynchronous process, 
rather than a database at the center

What Did NOT Work So Well

Multiple threads for protocol handling
 - needed dual CPUs on central servers to avoid packet loss
 - agents didn’t always start all threads, but look like they’re
   running
 - a state-machine, single thread implementation would have
   been better

Configuration data too amorphous
 - editors/web-forms for configuration changes came too late
 - full dynamic updates of configuration never got supported
 - no standardized naming of elements, clusters, etc.

Naming conventions
 - dot-separated tuples looked good at first, but couldn’t talk
   about off-site/cross-domain entities
 - cluster.system.host.component tuples were confusing, often
   having cluster == host, etc. 

Multiple Views

NGOp-style multiple views of monitored systems will be
even more important in a Grid universe:

 Grid users
   need to be able to monitor the systems on which their 
   jobs are running -- even as the job moves to different 
   systems.

 Grid operations folks
   need to be able to:
   - spot failures
   - find out about planned maintenance
   and do this accross multiple sites, so they can adjust
   configurations for distributing jobs, etc.

Local systems administrators
   need views of the systems they manage, without the 
   distraction of sites they don’t manage, and with issues 
   that grid users ignore highlighted so they can take 
   preventive measures

Site operations folks
   views that show problems actively preventing work 
   getting done, or that might require manual intervention, 
   without trouble predictors that should be left to sysadmins.

Host

swatch

plugin

ngopsrv

eventsrv

pingagnt URLagnt

ngopcli

Host

swatch

plugin

Host

swatchagnt

pluginagnt

Current Architecture

Status

web_gui

Proposed Architecture

swatchagnt

syslogsnmpagnt

agency

Host

net_snmp

syslog

site_server

configsrv

status_tool

eventsrv

configsrv

archiver

database

archiver

database

config_tool

site

Status

community_server

web_gui

browser

desktop

browser

desktopjava_gui

desktop

java_gui

desktop

- Each "agency" could, with snmp
  and swatch (logfile watcher) 
  agents, watch around 200 nodes

- Each site event server should handle
  up to 5000 agencies.

- Config service should be structured,
  deal well with multi-layered clusters
  of similar nodes with exceptions

- Unlike NGOp, agents should get
  info on what to watch from config
  service.

- Community servers could watch
  multiple sites, and only get info
  on things at that site they care about

- Could still have special purpose
  agents on specific nodes (i.e.
  webserver log watcher, etc.)

- One could run SNMP based tools
  like MRTG or Cricket on agency
  nodes, as well.

  


